Product List
Date:
April 14, 2007
43 Arava Street, Maccabim 71908, Israel Tel/Fax: +97289266437

Product List

1. MMIC products and RFIC devices

Part number	Product	Description	Picture / Layout
$\begin{aligned} & \text { S-UDC0018Vxx } \\ & \text { S-UDC0019Vxx } \end{aligned}$	Integrated wide band down converter 1724.5 GHz	Fundamental balanced diode mixer driven by an integrated frequency tripling LO chain. 10dB conversion loss, input LO $\begin{gathered} 5.3-7.5 \mathrm{GHz} @+3-+5 \mathrm{dBm}, \\ \mathrm{IF}=0.9-2.2 \mathrm{GHz}, \mathrm{RF}=17- \\ 24.5 \mathrm{GHz} . \text { (Tested) } \end{gathered}$	
$\begin{aligned} & \text { S-UDC0024Vxx } \\ & \text { S-UDC0025Vxx } \end{aligned}$	Integrated wide band up converter 1724.5 GHz	Fundamental balanced diode mixer driven by an integrated frequency tripling LO chain. 10dB conversion loss, input LO $\begin{gathered} 5.3-7.5 \mathrm{FHz} @+3-+5 \mathrm{dBm}, \\ \mathrm{IF}=0.9-2.2 \mathrm{GHz}, \\ \mathrm{RF}=17-24.5 \mathrm{GHz} . \text { (Tested) } \\ \hline \end{gathered}$	
S-UDC0028Vxx	Application specific integrated down converter 17.720.7 GHz	An image reject fundamental diode mixer, driven by an integrated frequency doubling LO driver chain. Conversion loss better than 11 dB including hybrid coupler, LO input 8.4-9.9GHz @5dBm (Tested)	
$\begin{aligned} & \text { S-UC24-30 } \\ & \text { S-DC24-30 } \end{aligned}$	Integrated wide band Up / Down Converter 24.530 GHz	A balance fundamental diode mixer driven by a frequency tripling LO chain. IF $0.9-3 \mathrm{GHz}$ RF $24.5-30 \mathrm{GHz}$, LO $7.8-9 \mathrm{GHz}$ @ 0dBm, conversion loss 10dB. The integrated LNA has typical 4 dB noise figure and 30 dB gain. (Tested)	
S-LNA0036Vxx	$\begin{gathered} 3 \text { stage LNA 17- } \\ 24.5 \mathrm{GHz} \end{gathered}$	3 stage LNA, $0.25 \mu \mathrm{~m}$ devices, gain > 24dB, NF < 4dB, RF frequency $17-24.5 \mathrm{GHz}, 10 \mathrm{~dB}$ return loss. (Tested)	
S-LNA0030Vxx	$\begin{gathered} 3 \text { stage LNA } \\ 17.7-20.7 \mathrm{GHz} \end{gathered}$	3 stage LNA, $0.25 \mu \mathrm{~m}$ devices, gain > 24dB, NF < 3.5dB, RF frequency $17.7-20.7 \mathrm{GHz}, 10 \mathrm{~dB}$ return loss (Tested)	

Date:

Part number	Product	Description	Picture / Layout
S-PWR0037Vxx	Power amp 22 dBm $17-24.5 \mathrm{GHz}$ with BIT power detector	3 stage Power amplifier. $2 x 0.5 \mathrm{~mm} 0.25 \mu \mathrm{~m}$ output cells, +22dBm output power @1dBc, RF frequency $17-24.5 \mathrm{GHz}, 16 \mathrm{~dB}$ small signal gain typical 10dB return loss. Power detector produces 100 mV DC when output power is greater than 10 dBm . (Tested)	$=10$ $(3.3 \times 2.1 \mathrm{~mm})$
S-PWR1001Vxx	Power amplifier $24.5-30 \mathrm{GHz}$ 20 dBm with BIT detector	3 stage Power amplifier. $2 x 0.5 \mathrm{~mm} 0.25 \mu \mathrm{~m}$ output cells, +20 dBm output power @1dBc, RF frequency $24.5-30 \mathrm{~Hz}, 13 \mathrm{~dB}$ small signal gain typical 10dB return loss. Power detector produces 100 mV DC when output power is greater than 10 dBm (Tested)	$=8+8$ $(3.3 x 2.1 \mathrm{~mm})$
S-PA24-30	Balanced power amplifier 18 dBm $24-30 \mathrm{GHz}$ with BIT detector	RF $24-30 \mathrm{GHz}$ 18 dBm output power $2 \times 0.5 \mathrm{~mm}$ cells in a balanced configuration 15 dB output return loss (Tested)	
	S band Power Amplifier	S band, 20W output power, 27 dB gain (Tested)	
	X band power amplifier	2Stage, $2 x 600 \mu \mathrm{~m}$ cell, X band, 32 dBm output power, 18 dB gain (Tested)	$2.2 \times 2 \mathrm{~mm}$

Part number	Product	Description	Picture / Layout
	X band Multifunction chip	T/R switching, buffers, LNA, 6bit attenuator, 6bit phase shifter LNA and Tx driver (Tested)	5.7x3.4mm
S-AMP1001Vxx	2 stage mid power driver	RF $15-28 \mathrm{GHz}$, 19dBm output power @1dBc, 10dB return loss, 15dB SSG (Tested)	
S-AMP0026Vxx	C band buffer	RF 5-10GHz, 10dB gain 10 dB typical return loss (Tested)	
	Single stage amplifier	RF 23-30GHz, gain 12dB (Tested)	
S-PWR0041V11	Traveling wave amplifier	DC-20GHz, gain 10dB, 12dB match (Tested)	
S-GTA0017Vxx	Frequency Tripler	Input 5-9GHz, conversion loss better than $8 \mathrm{~dB}, 10 \mathrm{~dB}$ return loss (Tested)	
S-GTA0027Vxx	Frequency Doubler	Input $8.4-9.9 \mathrm{GHz}$, 5 dB conversion loss (Tested)	

Part number	Product	Description	Picture / Layout
	X band mixer	Conversion loss <10dB RF 8-12GHz, IF LPF @ 5GHz (Tested)	
	Ku band mixer	Conversion loss <10dB RF $14-18 \mathrm{GHz}$, IF LPF @ 5 GHz (Tested)	
$\begin{aligned} & \text { S-UDC0034Vxx } \\ & \text { S-UDC0035Vxx } \end{aligned}$	K band mixer	Balanced diode mixer, 10 dB conversion loss, Up / Down converter, RF $17-24.5 \mathrm{GHz}$ IF $0.9-2.2 \mathrm{GHz}$ Integrated IF LPF (Tested)	
	Ka band mixer	Balanced diode mixer, 10dB conversion loss, Up / Down converter, RF $24.5-30 \mathrm{GHz}$ IF $0.9-2.2 \mathrm{GHz}$ Integrated IF LPF (Tested)	
	$\begin{aligned} & \text { IRM 17.7- } \\ & 20.7 \mathrm{GHz} \end{aligned}$	Conversion loss $<11 \mathrm{~dB}$ with hybrid coupler, RF 17.720.7 GHz , IF $0.9-3 \mathrm{GHz}$ (Tested)	
	6 bit phase shifter	6 bit, S band (Preliminary)	

Part number	Product	Description	Picture / Layout
	Ka Doppler sensor transmitter with integrated antenna	$30-32 \mathrm{GHz} 10 \mathrm{dBm}$, AM, FM modulation (Tested)	2.2x1.6mm
	Ka antenna	On chip, ~50deg EL, 60deg Az, 25GHz, 7\% BW (Tested)	$2.2 \times 1.6 \mathrm{~mm}$
	5.5 bit Digital Attenuator	6 bit, DC - 16GHz, IL 2.7dB, $0.5,1,2,4,8,8 \mathrm{~dB}$ bits (Tested)	
	6 bit Digital Phase Shifter	6 bit, X-band digital phase shifter, 5.6deg LSB, monotonic (Tested)	
S-IFcoupler	Monolithic IF quad coupler $0.9-1.5 \mathrm{GHz}$	Insertion loss $\sim 4 \mathrm{~dB}$, phase match better than 2deg, 15 dB typical return loss (Tested)	$4.5 \times 2.4 \mathrm{~mm}$
	HPF	HPF cutoff at 15 GHz , pass band insertion loss $<2 \mathrm{~dB}$, stop band insertion loss > 20dB return loss 10dB (Tested)	

Part number	Product	Description	Picture / Layout
	BPF	Pass band $20-30 \mathrm{GHz}$ Pass band insertion loss 2 dB Stop band insertion loss >10dB Return loss $>10 \mathrm{~dB}$ (Tested)	
S\#GTA46V11	LPF	5 versions of Bessel like LPF Cut off frequencies : 2.55 GHz , $2.7 \mathrm{GHz} 2.85 \mathrm{GHz}, 3 \mathrm{GHz}$ and 3.15 GHz , better than 15 dB match, Group delay < 3pSec up to 4 GHz (Tested)	
S\#GTA47V01	Signal Shaper	This custom made device incorporates diodes into an LPF in order to specially shape a signal prior to the Electro-Optic modulator driver	
	Digital level translator / inverter	Translates TTL input logic levels to switch FET control levels: $0 \mathrm{~V} /-2 \mathrm{Vp}$ (tested)	
	Wideband Detector	X-Ka broadband detector Balanced, temperature compensated with optional bias (tested)	
	X-band Transfer switch DPDTx2	X-band high isolation. 1 GHz BW transfer switch (tested)	

43 Arava Street, Maccabim 71908, Israel Tel/Fax: +97289266437

